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Abstract. The local intrinsic dimensionality (LID) model assesses the
complexity of data within the vicinity of a query point, through the growth
rate of the probability measure within an expanding neighborhood. In
this paper, we show how LID is asymptotically related to the entropy of
the lower tail of the distribution of distances from the query. We establish
tight relationships for cumulative Shannon entropy, entropy power, and
their generalized Tsallis entropy variants, all with the potential for serving
as the basis for new estimators of LID, or as substitutes for LID-based
characterization and feature representations in classification and other
learning contexts.

1 Introduction

Assessing the complexity of high dimensional data is a fundamental task that
underpins many activities in machine learning and data mining. One well-known
measure of data complexity is the intrinsic dimensionality, a unitless quantity
that can be interpreted as the minimum number of latent variables needed to
describe the data.

The many extant formulations of intrinsic dimensionality can be divided into
two broad groups, global and local. Global intrinsic dimensionality, which takes
contributions from the full dataset to measure its complexity as a whole, has been
more widely investigated. By contrast, local variants of intrinsic dimensionality
assess the complexity of the data in the vicinity of a designated query location,
most notably in terms of the growth rate in the probability measure captured
by an expanding neighborhood. Local variants can therefore associate different
intrinsic dimensional values to different locations in the data domain.

Our focus in this paper is on the local intrinsic dimension (LID) as formulated
in [22, 23], and in particular, establishing how it relates to entropy, perhaps the
most fundamental and widely-used model of data complexity. In its essence,
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entropy can be regarded as a measure of the uncertainty of a distribution. Our
study of entropy considers the distribution of distances to a query location,
where the distances are induced by a global data distribution. In particular, we
consider the entropy of the lower tail of the neighbor distance distribution (the
tail entropy), and consider its asymptotic tendency as the neighborhood radius
approaches zero.

Our analysis of the relationship between the tail entropy and local intrin-
sic dimensionality has further implications due to an established relationship
between the latter and the statistical theory of extreme values (EVT) [2]. For
any distribution of distances satisfying appropriate smoothness assumptions in
the lower tail, as the neighborhood radius approaches zero, the tail distribution
takes the form of a power law. Asymptotically, power law distributions can be
said to arise naturally in the lower tail, with the exponent of the power law
corresponding to the LID value.

We formulate asymptotic results that relate local intrinsic dimensionality
with multiple variants of tail entropy. In particular, we relate LID to:

– The cumulative tail entropy. Cumulative entropy [17, 35] is an information-
theoretic measure popular in reliability theory, where it is used to model
uncertainty over time intervals. It corresponds to the expected value of the
mean inactivity time. Compared to ordinary Shannon differential entropy,
cumulative entropy has certain attractive properties, such as non-negativity
and ease of estimation.

– The tail entropy power. The entropy power is the exponential of the
entropy, and is also known as perplexity in the natural language processing
community. It corresponds to the volume of the smallest set that contains
most of the probability measure [16], and can be interpreted as a measure of
statistical dispersion [33]. It is also related to Fisher information via Stam’s
inequality [46].

– Generalized tail entropies (tail cumulative q-entropy and tail q-entropy
power). Generalized Tsallis entropies [47, 8] are a family of entropies charac-
terized via an exponent parameter q applied to the probabilities, in which
the traditional (Shannon) entropy variants are obtained as the special case
q → 1. The use of such a parameter can often facilitate more accurate fitting
of data characteristics and robustness to outliers.

We believe our theoretical results are interesting in their own right, as they
capture fundamental properties of local neighborhood geometry, and since they
hold asymptotically for essentially all smooth data distributions. The relationships
between LID and tail entropy formulations also have two interesting potential
applications:

– Estimation: Our theory allows the development of new estimators for the
LID of a query point, by applying existing estimators for cumulative en-
tropy [17] and cumulative q-entropy [8] to samples of a sufficiently-small
neighborhood of the query.
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– Feature representation: LID estimates can be used as features or as
characterizations within machine learning models, such as for the detection of
adversarial examples [36] or overfitting during learning [37]. However, small
errors in the estimation of LID can have a disproportionally large impact on
learning models. In contrast, the tail entropy power has long been known
to possess attractive properties for linear discrete systems [43], and thus
has potential as a more robust substitute for LID when used as a feature in
logistic regression models.

In summary, our key contributions are the development of new theory that
asymptotically relates tail entropy and LID, with potential applications of this
theory for estimation and feature representation. To the best of our knowledge,
this is the first work relating intrinsic dimensionality and the asymptotic behavior
of entropy within neighborhoods of a data domain.

2 Related Work

Our work relates to intrinsic dimensionality and its estimation, as well as tail
entropy and its varieties such as generalized tail entropy and cumulative tail
entropy. We briefly review these in turn.

Intrinsic dimensionality can be assessed either globally (for all data points) or
locally (with respect to a chosen query point). Surveys of the field provide more
detail [9, 11, 48]. In the global case, considerable work has focused on topological
models, with accompanying estimation methods [7, 41, 38]. Examples here include
PCA and its variants [29], graph based methods [15] and fractal models [9, 20].
Other techniques such as IDEA [45, 44] and DANCo [13] estimate the dimension
based on concentration of norms and angles, or 2-nearest neighbors [18].

For local intrinsic dimensionality, a popular estimator is the maximum like-
lihood estimator, studied in the Euclidean setting by Levina and Bickel [34]
and later formulated under the more general assumptions of EVT by Amsaleg
et al. [23, 2], who showed it to be equivalent to the classic Hill estimator [21].
Other local estimators include expected simplex skewness [28], the tight locality
estimator [3], the MiND framework [44] and the manifold adaptive dimension [19].

Local intrinsic dimensionality has been used in a range of applications. These
include modeling deformation in complex materials [49], dimension reduction via
local PCA [30], similarity search [26], clustering [10], outlier detection [27], statis-
tical manifold learning [12], adversarial example detection [36], and adversarial
nearest neighbor characterization [1, 4], and deep learning understanding [37, 5].
In deep learning, it has been shown that adversarial examples are associated
with high LID estimates, a characteristic that can be leveraged to build accurate
adversarial example detectors [36]. It has also been found that the LID of deep
representations [5] or input data [42] is an indicator of the generalization perfor-
mance of deep neural networks (DNNs). A manifold ‘dimensionality expansion’
phenomenon has been observed when DNNs overfit to noisy class labels [37].

Cumulative entropy was formulated in [17] and is a variant of cumulative
residual entropy [35]. Outside of reliability theory analysis, it has been used in
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such data mining tasks as dependency analysis [39] and subspace cluster analysis
[6], where it has proved effective due to the existence of good estimators. Such
investigation has been at a global level (over the entire data domain), rather
than at the local level as in our study. Generalized variants based on Tsallis
q-statistics have been developed for both entropy [47] and cumulative entropy [8].

The concept of tail entropy has been used in financial applications for assessing
the expected shortfall [40] in the upper tail using quantization. This is different
from our context, where we analyze lower tails and develop exact results for an
asymptotic regime.

3 Local Intrinsic Dimensionality

In this section, we summarize the LID model using the formulation of [23].
LID can be regarded as a continuous extension of the expansion dimension

due to Karger and Ruhl [25, 32]. Like earlier expansion-based models of intrinsic
dimension, it draws its motivation from the relationship between volume and
radius in an expanding ball, where (as originally stated in [22]) the volume of the
ball is taken to be the probability measure associated with the region it encloses.
The probability as a function of radius — denoted by F (r) — has the form of
a univariate cumulative distribution function (CDF). The model formulation
(as stated in [23]) generalizes this notion to real-valued functions F for which
F (0) = 0, under appropriate assumptions of smoothness.

Definition 1 ([23]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r 6= 0. The intrinsic dimensionality of F at r is
defined as follows whenever the limit exists:

IntrDimF (r) , lim
ε→0

ln (F ((1+ε)r)/F (r))

ln(1+ε)
.

When F satisfies certain smoothness conditions in the vicinity of r, its intrinsic
dimensionality has a convenient known form:

Theorem 1 ([23]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r 6= 0. If F is continuously differentiable at r,
then

IDF (r) ,
r · F ′(r)
F (r)

= IntrDimF (r) .

Let x be a location of interest within a data domain S for which the distance
measure d has been defined. To any generated sample y ∈ D we can associate the
distance r = d(x,y); in this way, the global distribution that produces samples y
can be said to induce a local distance distribution with CDF F with respect to
x. In characterizing the local intrinsic dimensionality in the vicinity of location
x, we are interested in the limit of IDF (r) as the distance r tends to 0, which we
denote by

ID∗F , lim
r→0

IDF (r) .
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Henceforth, when we refer to the local intrinsic dimensionality (LID) of a function
F , or of a point x whose induced distance distribution has F as its CDF, we
will take ‘LID’ to mean the quantity ID∗F . In general, ID∗F is not necessarily an
integer. In practice, estimation of the LID at x would give an indication of the
dimension of the submanifold containing x that best fits the distribution.

The function IDF can be seen to fully characterize its associated function F .
This result is analogous to a foundational result from the statistical theory of
extreme values (EVT), in that it corresponds under an inversion transformation
to the Karamata representation theorem [31] for the upper tails of regularly
varying functions. For more information on EVT and how the LID model relates
to it, we refer the reader to [14, 23, 24].

Theorem 2 (LID Representation Theorem [23]). Let F : R → R be a
real-valued function, and assume that ID∗F exists. Let x and w be values for
which x/w and F (x)/F (w) are both positive. If F is non-zero and continuously
differentiable everywhere in the interval [min{x,w},max{x,w}], then

F (x)

F (w)
=
( x
w

)ID∗
F

·GF (x,w), where GF (x,w) , exp

(∫ w

x

ID∗F − IDF (t)

t
dt

)
,

whenever the integral exists.

In [23], conditions on x and w are provided for which the factor GF (x,w)
can be seen to tend to 1 as x,w → 0. The convergence characteristics of F to
its asymptotic form are expressed by the factor GF (x,w), which is related to
the slowly-varying component of functions as studied in EVT [14]. As we will
shown in the next section, we make use of the LID Representation Theorem in
our analysis of the limits of tail entropy variants under a form of normalization.

4 Tail Entropy and LID

In this section, we will establish relationships between local intrinsic dimensional-
ity and several forms of entropy conditioned on the lower tails of smooth functions
on domains bounded from below at zero. The results presented in this section all
hold asymptotically, as the tail boundary tends toward zero, when normalized
with respect to the length of the tail.

4.1 Definitions of Tail Entropy Variants

We begin with formal definitions of the tail entropies considered in this paper. In
each case, we assume that we are given a non-negative real-valued function F
whose restriction to [0, w] satisfies the following smooth growth properties:

– F (0) = 0, and F (t) > 0 for t ∈ (0, w];
– F is strictly monotonically increasing;
– F is continuously differentiable.
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The function φ(t) , F (t)/F (w) thus satisfies the conditions of a cumulative
distribution function over t ∈ [0, w] (recall that F (t|t ≤ w) = F (t)/F (w) over
t ∈ [0, w]), with the derivative φ′(t) = F ′(t)/F (w) as its corresponding probability
density function.

The following tail entropy formulations apply to any function F satisfying
the conditions stated above. In their definitions, the only difference between the
tail variants and the original versions is that the distribution is conditioned to
the lower tail [0, w]. Consequently, in the tail variants, integration is performed
over the lower tail and not the entire distributional range [0,+∞).

Definition 2 (Tail Entropy). The entropy of F conditioned on [0, w] is

H(F,w) , −
∫ w

0

F ′(t)

F (w)
ln
F ′(t)

F (w)
dt .

The cumulative entropy is a variant of entropy proposed in [17, 35] due to its
attractive theoretical properties. Tail conditioning on the cumulative entropy has
the same general form as that of the tail entropy.

Definition 3 (Cumulative Tail Entropy). The cumulative entropy of F con-
ditioned on [0, w] is

cH(F,w) , −
∫ w

0

F (t)

F (w)
ln

F (t)

F (w)
dt .

There are several standard definitions of entropy power in the research
literature. For our purposes, we adopt the simplest — the exponential of Shannon
entropy — for our definition conditioned to the tail.

Definition 4 (Tail Entropy Power). The entropy power of F conditioned on
[0, w] is defined to be

HP(F,w) , exp (H(F,w)) .

In the introduction, we briefly mentioned some motivation for the entropy
power HP(F,w). We can add to this as follows:

– It can be interpreted as a diversity. Observe that when F is a (univariate)
uniform distance distribution ranging over the interval [0, w], we have ID∗F = 1
and HP(F,w) = w. In other words, the entropy power is equal to the ‘effective
diversity’ of the distribution (the number of neighbor distance possibilities).

– Given two different queries, each with its own neighborhood, one query with
tail entropy power equal to 2 and the other with tail entropy power equal to
4, we can say that the distance distribution of the second query is twice as
diverse as that of the first query.

For each of the tail entropy variants introduced above, we also propose
analogous variants based on the q-entropy formulation due to Tallis [47]. In
general, q-entropy formulations can be shown to be identical to their Shannon
entropy analogues in the limit as q tends to 1.
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Table 1: Asymptotic relationships between normalized tail entropy variants and
local intrinsic dimensionality.

Entropy Variant Normalized Tail Entropy Limit as w→ 0+

Cumulative Entropy ncH(F,w) , 1
w

cH(F,w)
ID∗

F
(ID∗

F
+1)2

Cumulative q-Entropy ncHq(F,w) , 1
w

cHq(F,w)
ID∗

F
(ID∗

F
+1)(q ID∗

F
+1)

Entropy Power nHP(F,w) , 1
w

HP(F,w) 1
ID∗

F
exp

(
1− 1

ID∗
F

)
q-Entropy Power nHPq(F,w) , 1

w
HPq(F,w)

(
(ID∗

F )q

q ID∗
F

−q+1

) 1
1−q

Definition 5 (Tail q-Entropy). For any q > 0 (q 6= 1), the q-entropy of F
conditioned on [0, w] is defined to be

Hq(F,w) ,
1

q − 1

(
1−

∫ w

0

(
F ′(t)

F (w)

)q
dt

)
=

1

q − 1

∫ w

0

F ′(t)

F (w)
−
(
F ′(t)

F (w)

)q
dt .

Definition 6 (Cumulative Tail q-Entropy). For any q > 0 (q 6= 1), the
cumulative q-entropy of F conditioned on [0, w] is defined to be

cHq(F,w) ,
1

q − 1

∫ w

0

F (t)

F (w)
−
(
F (t)

F (w)

)q
dt .

We define the tail q-entropy power using the q-exponential function from

Tsallis statistics [47], expq(x) , [1 + (1− q)x]
1

1−q . Note that L’Hôpital’s rule can
be used to show that expq(x)→ ex as q → 1.

Definition 7 (Tail q-Entropy Power). For any q > 0 (q 6= 1), the q-entropy
power of F conditioned on [0, w] is defined to be

HPq(F,w) , [1 + (1− q)Hq(F,w)]
1

1−q .

For the cumulative tail entropy and tail entropy power variants, we will also
consider a normalization given by the ratio of the entropy with w, the length of
the tail. In the remainder of this section, we will show that as w tends to zero,
the limits of these normalized entropies can be expressed in terms of the local
intrinsic dimensionality of F . The notation for these normalized entropy variants,
and our theorems for their limits in terms of LID, are summarized in Table 1.

4.2 Technical Preliminaries

Before presenting the main theoretical results of the paper, we begin with
two technical lemmas. The first lemma concerns a slight generalization of the
cumulative entropy formulation, that allows it to greatly facilitate the proofs for
two tail entropy variants, the cumulative entropy and the entropy power.
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Lemma 1. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and as-
sume that ID∗F exists and is positive. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing, and ψ is positive. Then for any constant u < ID∗F ,

lim
w→0+

wu−1
∫ w

0

ψ(w)F (t)

tuF (w)
ln
ψ(w)F (t)

tuF (w)
dt

= lim
w→0+

ψ(w)

ID∗F +1− u

[
ln
ψ(w)

wu
− ID∗F −u

ID∗F +1− u

]
whenever the right-hand limit exists or diverges to +∞ or −∞.

Proof: Since the limit ID∗F = limv→0+ IDF (v) is assumed to exist, we have that
for any real value ε > 0 satisfying ε < min{r, ID∗F −u}, there must exist a value
0 < δ < ε such that v < δ implies that | IDF (v) − ID∗F | < ε. Therefore, when
0 < t ≤ w < δ,

|lnGF (t, w)| =

∣∣∣∣∫ w

t

ID∗F − IDF (v)

v
dv

∣∣∣∣ < ε ·
∣∣∣∣∫ w

t

1

v
dv

∣∣∣∣ = ε · ln w
t
.

Exponentiating, we obtain the bounds(w
t

)−ε
< GF (t, w) <

(w
t

)ε
. (1)

For any real x > 0, we define xlnx(x) , x lnx. Applying Theorem 2 to F (t), and
making use of the upper bound on GF , the integral becomes∫ w

0

xlnx

(
ψ(w)F (t)

tuF (w)

)
dt (2)

=

∫ w

0

xlnx

(
ψ(w)

tu

(
t

w

)ID∗
F

GF (t, w)

)
dt <

∫ w

0

xlnx

(
ψ(w)

tu

(
t

w

)ID∗
F(w
t

)ε)
dt

<

∫ w

0

xlnx

(
ψ(w)

tu

(
t

w

)ID∗
F −ε

)
dt <

ψ(w)

wm+u

∫ w

0

tm ·
[
m ln t+ ln

ψ(w)

wm+u

]
dt,

where m , ID∗F −u− ε > 0.
Noting that m > 0 implies that limt→0 t

m ln t = 0, integration of Equation 2
by parts yields an expression that depends on F only through its LID value.

wu−1
∫ w

0

xlnx

(
ψ(w)F (t)

tuF (w)

)
dt

<
mwu−1ψ(w)

wm+u

[
tm+1

m+ 1
ln t

∣∣∣∣w
0

−
∫ w

0

tm+1

m+ 1
· 1

t
dt

]
+
wu−1ψ(w)

wm+u
ln

ψ(w)

wm+u
· w

m+1

m+ 1
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<
mψ(w)

wm+1

[
wm+1

m+ 1
lnw − wm+1

(m+ 1)2

]
+

ψ(w)

m+ 1
ln

ψ(w)

wm+u

<
ψ(w)

m+ 1

[
m lnw − m

m+ 1
+ ln

ψ(w)

wm+u

]
<

ψ(w)

m+ 1

[
ln
ψ(w)

wu
− m

m+ 1

]
=

ψ(w)

ID∗F +1− u− ε

[
ln
ψ(w)

wu
− ID∗F −u− ε

ID∗F +1− u− ε

]
.

Similar arguments using the lower bound from Equation 1 leads us to

wu−1
∫ w

0

xlnx

(
ψ(w)F (t)

tuF (w)

)
dt >

ψ(w)

ID∗F +1− u+ ε

[
ln
ψ(w)

wu
− ID∗F −u+ ε

ID∗F +1− u+ ε

]
.

Since ε can be chosen arbitrarily close to 0, and since 0 < w < ε by construc-
tion, taking the limit as w → 0+ yields

lim
w→0+

wu−1
∫ w

0

xlnx

(
ψ(w)F (t)

tuF (w)

)
dt = lim

w→0+

ψ(w)

ID∗F +1− u

[
ln
ψ(w)

wu
− ID∗F −u

ID∗F +1− u

]
whenever the right-hand limit exists, or diverges to +∞ or −∞. �

The second technical lemma follows as a corollary of Lemma 1, since it uses
much of the same proof strategy, albeit more simply and directly. Analogous
with Lemma 1, it concerns a slight generalization of the cumulative q-entropy
formulation that facilitates the proof of the results for the q-entropy and q-entropy
power variants.

Corollary 1. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and
assume that ID∗F exists and is positive. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing, and ψ is positive. Then for any constants u < ID∗F and
z > 0,

lim
w→0+

wzu−1
∫ w

0

(
ψ(w)F (t)

tuF (w)

)z
dt =

limw→0+ ψ
z(w)

z ID∗F −zu+ 1

whenever the right-hand limit exists, or diverges to +∞ or −∞.

Proof: Following the same proof strategy of Lemma 1 that led to Equation 2,
we arrive at the following upper bound on the integral:∫ w

0

(
ψ(w)F (t)

tuF (w)

)z
dt <

ψz(w)

wz(m+u)

∫ w

0

tzm dt =
ψz(w)

(zm+ 1)wzu−1
,

where m = ID∗F −u− ε as before.
Continuing according to the proof strategy of Lemma 1, we use the lower

bound from Equation 1, let ε vanish, and then apply the limit w → 0+ with a
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factor of wzu−1. This brings us to

lim
w→0+

wzu−1
∫ w

0

(
ψ(w)F (t)

tuF (w)

)z
dt

= lim
w→0+

wzu−1
ψz(w)

(z ID∗F −zu+ 1)wzu−1
=

limw→0+ ψ
z(w)

z ID∗F −zu+ 1
,

as required. �

4.3 Cumulative Tail Entropy and LID

Using the technical lemmas established in Section 4.2, we present the main
results for the cumulative tail entropy variants. The first result shows that as
the tail length w tends to zero, the normalized cumulative entropy ncH(F,w) ,
1
w cH(F,w) tends to a value entirely determined by the local intrinsic dimension-
ality associated with F .

Theorem 3. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and
assume that ID∗F exists and is positive. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. We have

lim
w→0+

ncH(F,w) = lim
w→0+

− 1

w

∫ w

0

F (t)

F (w)
ln

F (t)

F (w)
dt =

ID∗F
(ID∗F +1)2

.

Proof: Follows directly from Lemma 1, for the choices u = 0 and ψ(w) = 1. �

The second result uses Corollary 1 to show that as the tail length w tends to
zero, the normalized cumulative q-entropy ncHq(F,w) , 1

w cHq(F,w) tends to a
value determined by q together with the local intrinsic dimensionality associated
with F .

Theorem 4. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and
assume that ID∗F exists and is positive. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then for q > 0 with q 6= 1,

lim
w→0+

ncHq(F,w)

= lim
w→0+

1

w(q − 1)

∫ w

0

F (t)

F (w)
−
(
F (t)

F (w)

)q
dt =

ID∗F
(ID∗F +1)(q ID∗F +1)

.

Proof: Separating the integral and applying Corollary 1 twice,

lim
w→0+

1

w(q − 1)

∫ w

0

F (t)

F (w)
−
(
F (t)

F (w)

)q
dt

=
1

q − 1

(
1

ID∗F +1
− 1

q ID∗F +1

)
=

ID∗F
(ID∗F +1)(q ID∗F +1)

follows for the choices u = 0, ψ(w) = 1, and (respectively) z = 1 and z = q. �

Observe that as q tends to 1, the cumulative q-entropy variant ncHq(F,w)
does tend to the cumulative entropy ncH(F,w), as one would expect.
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4.4 Tail Entropy Power and LID

We find that we encounter convergence issues when attempting to use the
machinery of Lemma 1 to formulate a relationship between LID and either the
tail entropy H(F,w) or the normalized tail entropy nH(F,w), the limits diverging
as the tail size tends to zero.

Instead, we show that the entropy power, when normalized, does have a limit
expressed as a function of the LID of F .

Theorem 5. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is greater than 1. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then

lim
w→0+

nHP(F,w)

= lim
w→0+

1

w
exp

(
−
∫ w

0

F ′(t)

F (w)
ln
F ′(t)

F (w)
dt

)
=

1

ID∗F
exp

(
1− 1

ID∗F

)
.

Proof: Due to space limitations, the details are omitted in this version. The
proof is analogous to that of Theorem 3, and makes use of Theorem 1 and
Lemma 1 with the choices u = 1 and ψ(w) = ID∗F . The choice of u is valid for
Lemma 1 since by assumption ID∗F > 1 = u. �

For the case of the normalized tail q-entropy power nHPq(F,w), we have the
following result.

Theorem 6. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is greater than 1. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then for q > 0 (q 6= 1),

lim
w→0+

nHPq(F,w)

= lim
w→0+

1

w
expq

(
1

q − 1

[
1−

∫ w

0

(
F ′(t)

F (w)

)q
dt

])
=

[
(ID∗F )q

q ID∗F −q + 1

] 1
1−q

.

Proof: Due to space limitations, the details are omitted in this version. The
proof is analogous to that of Theorem 4, and makes use of Theorem 1 and
Corollary 1 with the choices u = 1, ψ(w) = ID∗F , and z = q. The choice of u is
valid for Corollary 1 since by assumption ID∗F > 1 = u. �

5 Conclusion

In this preliminary theoretical investigation, we have established an asymptotic
relationship between tail entropy variants and the emerging theory of local
intrinsic dimensionality. Our results provide new insights into the complexity
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of data within local neighborhoods, and how they may be assessed. These
fundamental discoveries also open the door to cross-fertilization between intrinsic
dimensionality research and entropy research, particularly as regards the potential
for the use of robust estimators of tail entropy as substitutes for LID in learning
contexts. Our results could also allow for applications and characterizations for
DNNs based on LID to be extended to the field of information theory.

As future work, we plan to follow with in-depth experimental studies on
the performance characteristics of cumulative entropy and entropy power as
estimators or substitutes of LID for deep learning and data mining applications.
We also plan to investigate the generalization and learning behaviors of DNNs
based on both LID and tail entropy.
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Michael E. Houle, Miloš Radovanović, and Xuan Vinh Nguyen. High intrinsic di-
mensionality facilitates adversarial attack: Theoretical evidence. IEEE Transactions
on Information Forensics and Security, 16:854–865, 2021.

5. A. Ansuini, A. Laio, J. H. Macke, and D. Zoccolan. Intrinsic dimension of data
representations in deep neural networks. In Advances in Neural Information
Processing Systems, pages 6111–6122, 2019.
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